loading

 sales@gsl-energy.com     0086 13923720280

NTU batteries charge \'70% in 2 minutes\' | Adelaide Now -g-icon-error cloudy-day nav_small_right nav_small_right nav_small_right nav_small_right nav_small_right nav_small_right nav_small_right nav_small_right nav_small_right 0A0871E9-1636-49F4-9041-2E36E

Scientists at Nanyang Technological University (NTU) in Singapore have developed supercells
Charge the battery quickly and charge up to 70 in just two minutes.
The life of the new generation battery is also more than 20 years, which is more than 10 times that of the existing lithium battery. ion batteries.
This breakthrough has a wide range
Has a wide impact on all industries, especially electric vehicles, consumers have been delayed due to long charging times and limited battery life.
With this new technology from Nanda, electric car drivers can save thousands of battery replacement costs and charge the car in just a few minutes.
Commonly used in mobile phones, tablets, electric vehicles, rechargeable lithium-
The charging cycle of an ion battery is usually 500 times.
This is equivalent to a typical use time of two to three years, and it takes about two hours for each cycle to fully charge the battery. In the new NTU-
Developed battery, conventional graphite for anode (negative pole) in lithium)
Ion batteries are replaced by a new gel material made of titanium dioxide.
Titanium dioxide is a rich, cheap and safe material found in the soil.
It is usually used as a food additive or sunscreen to absorb harmful UV rays.
The NTU team naturally found a way to convert titanium dioxide into tiny nanotubes that are thousands of times thinner than the diameter of human hair.
This speeds up the chemical reactions that occur in the new battery, thus enabling ultra-high-speed charging.
Invented by Associate Professor Chen Xiaodong of Nanda School of Materials Science and Engineering, the science behind the formation of new titanium dioxide gel is published in the latest issue, the international leading science magazine in material science.
Professor Chen and his team will apply for a certificate. of-
Building a large concept authorization
Scale battery prototype.
With the help of NTUitive, a complete
Nanda subsidiary established to support the launch of Nanda-
Patent technology has attracted interest in the industry.
The technology is currently getting a final production license for a company.
Professor Chen expects a new generation of fast-
Charging batteries will enter the market in the next two years.
It also has the potential to be a key solution to overcome the long-term power problems associated with electricitymobility.
\"Electric vehicles can significantly increase their mileage by only five minutes of charging, which is equivalent to the time it takes to refuel the current car,\" Professor Chen added . \".
\"It is also important that we can now significantly reduce the toxic waste generated by discarded batteries, because our batteries are ten times longer than the current lithium generation time. ion batteries. ”The 10,000-
The cycle life of the new battery also means that the driver of the electric vehicle will save the cost of replacing the battery, and the cost of each battery may exceed $5,000.
According to Frost & Sullivan, the main growth
Global rechargeable lithium market consultancy-
The ion battery is expected to be worth $23.
2016 4 billion. Lithium-
Ion batteries usually use additives to combine the electrodes with the anode, which affects the speed of electrons and ions entering and leaving the battery.
However, Professor Chen\'s New Cross
Titanium dioxide linked-
Electrode-based electrodes eliminate the need for these additives and can pack more energy into the same space.
It is very easy to make this new nano tube gel.
Titanium dioxide is mixed with sodium hydroxide and stirred at a certain temperature, so battery manufacturers will find it easy to integrate new gels into their current production process.
Professor Richard Yazami
Inventor of lithium
Graphite anode used for lithium today 30 years ago-
Professor Chen said that the invention of ion batteries is the next major leap in battery technology.
\"And the cost of lithium --
Since Sony commercialized the ion battery in 1991, the ion battery has been greatly reduced and its performance has improved. The market is rapidly expanding to adapt to new applications in the field of electric mobile and energy storage . \" He did not participate in Professor Chen\'s research project.
Last year, Professor Yazami was awarded the prestigious Draper Award by the National Institute of Engineering for his research.
Breakthrough work to develop lithium
Ion batteries with three other scientists.
\"However, there is still room for improvement, and one of the key areas is the power density-how much power can be stored in a certain amount of space-which is directly related to the ability to charge quickly.
Ideally, the charging time of an electric vehicle battery should be less than 15 minutes, as demonstrated by Professor Chen\'s nano-structured anode.
\"Professor Yazami is now developing new batteries for electric vehicle applications at the Nanda Energy Institute.
The battery research project took four scientists three years to complete.
It is funded by the National Research Foundation (NRF) of the Prime Minister\'s Office of Singapore, under the campus of its energy and water management nano-materials research excellence and technology enterprise project.

GET IN TOUCH WITH Us
recommended articles
SERVICE INFO CENTER Inverter Compatibility
UK Residential Installation: GSL ENERGY 5kW/10kWh All-in-One Energy Storage System
In March 2025, GSL ENERGY successfully installed a 5kW/10kWh all-in-one home energy storage system in the UK, providing the household with a reliable and efficient way to store and manage solar energy.
European Off-Grid Energy Storage Project Case Study: 5 kW/10 kWh All-in-One Energy Storage System
Due to the rising energy costs and increasing challenges to grid stability, a growing number of European households are turning to self-generation and energy storage systems. Recently, GSL ENERGY successfully installed a 5 kW/10 kWh off-grid all-in-one energy storage system for a client living in a remote part of Europe, providing a reliable independent power solution for their residence.
How much does a commercial and industrial energy storage system cost?
As many countries start to move toward new energy storage solutions, commercial and industrial energy storage systems (C&I ESS) have become crucial for reducing electricity costs, stabilizing power supply, and supporting the integration of renewable energy. A common question that the businesses have is, "How much does a C&I ESS cost?"
A Day in the Life of a Battery Energy Storage System Manufacturer: Behind the Scenes
Battery energy storage system (BESS) manufacturers are far more than just factories that "make batteries." Every day, their work includes R&D, manufacturing, testing, delivery, and after-sales service, making them the most unsung force behind the global energy transition. Today, follow GSL ENERGY and take a look inside a day in the life of a battery energy storage system manufacturer.
Are solar batteries worth buying?-A Detailed Q&A Guide

Are solar batteries worth buying? This question maybe troublesome for homeowners, farmers, and businesses. GSL ENERGY, a 15-year supplier of solar batteries, analyzes the advantages, value, and benefits of the solar batteries.
GSL ENERGY Hub Series Energy Storage Systems: Integrated Energy Solutions Focused on Multiple Scenarios
As a leading provider of energy storage, GSL ENERGY Hub Series energy sorage systems focus on core application scenarios such as industrial, commercial, and residential. Focusing on high integration, high security, and intelligent design, the system offers two product categories covering the commercial and industrial energy storage system (LiHub series) and the residential energy storage system (PowerHub series). These products fully meet the needs of the buyers for optimizing electricity costs, ensuring energy reliability, and utilizing green energy.
What is Commercial & Industrial Energy Storage (C&I ESS)? – A Complete Q&A Guide
A commercial and industrial energy storage system (C&I ESS) refers to battery systems designed for businesses, factories, data centers, and commercial buildings. C&I ESS focuses on high capacity, high reliability, and long-term performance. They are used to store energy to optimize costs, support the integration of renewable energy, and provide backup power during power outages.
Analysis of the Differences Between 0.5 C and 0.5 P in Energy Storage Systems
In the energy storage, we often encounter the concepts of 0.5 C and 0.5 P. Although both refer to the charge and discharge rate of energy storage systems, their actual meanings and application focuses differ. This article will provide a detailed analysis of the two, focusing on their definitions differences, physical differences, and application differences.
China's Battery Energy Storage Manufacturers Drive Global Energy Transition
Against the backdrop of China's dual carbon goals and the global energy transition, China has emerged as the world's largest battery and energy storage manufacturing hub. Strong policy support for energy storage exports, coupled with rapidly growing demand for residential and commercial/industrial energy storage systems (C&I ESS), provides robust backing for global energy restructuring. Riding this wave, GSL ENERGY—a leading China battery storage manufacturer—has leveraged 15 years of R&D and manufacturing expertise to become a trusted global supplier of LiFePO4 batteries and ESS solutions from China.
no data
  Tel: +86 755 84515360
 Address: A602, Tianan Cyber Park, Huangge North Road, Longgang District, Shenzhen, China
GSL ENERGY - A leading green energy supplier in China since 2011

0086 13923720280

Solar energy storage battery manufacturer contact information
Contact us
whatsapp
Contact customer service
Contact us
whatsapp
cancel
Customer service
detect