loading

 sales@gsl-energy.com     0086 13923720280

reaction temperature sensing (rts)-based control for li-ion battery safety

We report temperature sensing (RTS)-
Fundamentally strengthen basic control
Ion battery safety
RTS placed in Li-
The ion battery display detects temperature rise faster and more accurately than the external measurement battery surface temperature.
We proved RTS for the first time-
Close a dangerous short based on control
Circuit events 3 times earlier than surface temperature-
Based on the control, prevent the battery from overheating at 50 °c, resulting in damage to the battery.
As shown in the figure, cylindrical Li-
Ion battery (
Format 18650, diameter 18mm, height 65mm)
Embedded micro-reaction temperature sensor (RTS)
For internal reaction temperature diagnosis.
The micro temperature sensor is located at the front end of the reaction area of the cylindrical Li-
Ion batteries with the highest temperature along the radial direction.
With the traditional cylindrical Li-
Ion batteries, there are four additional steps to make batteries with RTS :(1)
Micro temperature sensor coated with P-px
Corrosion in operation
Conditions of ion pool; (2)
During the winding process, the sensor is embedded in the reaction interface between the negative electrode and the separator near the innermost side of the jelly coil; (3)
Insert the jelly roller with embedded sensor with pre-
A small hole was drilled on the wall for sticking the sensor out of the tank; (4)
Before filling the electrolyte and battery curl, seal the small holes in the wall of the jar with epoxy resin.
The micro-temperature sensor used in this study is the T-type micro-thermocouple (
RTD 600 T)
The wire is 80 um in diameter and 10 um in insulation.
The micro-thermocouple received on the measuring tip is not insulated.
In the nano-processing laboratory of Penn State Institute of Materials, a special parylene evaporator is used to coat a parylene layer of 10 μm at the measuring tip.
Using insulation, the sensor measures the thickness of the tip at 100 Ethereum, the same thickness as the wire.
Place another micro-temperature sensor on the outer surface of the battery to monitor the surface temperature (T)
And compare with RTS.
The experimental battery is used in the battery manufacturing laboratory of Penn State University (NCM)
Graphite is used as positive and negative electrode materials respectively.
The thickness of the positive and negative electrodes is mm and mm, respectively, including the collection of the current collector and the coating on both sides.
The positive collector is aluminum foil with 15 Ethereum and the negative collector is copper foil with 10um um.
The separator Celgard®2320pp PP/PE/PP three-layer film with a thickness of 20 um.
Electrolyte is 1.
EC: EMC: DMC (20:20:60u2009v%).
To verify the effectiveness of RTS, we have developed an experimental system that can trigger and terminate short circuit of experimental Li-ion cell.
The experimental system is illustrated.
Shunt resistance (0. 15u2009mΩ, ±0. 5%, OHMITE, USA)
Used to measure the short circuit current of the battery.
The total external short circuit resistance is 10mm Ω, including all resistors on the outside of the battery, measured by a low resistance meter (
3560 Aoki, Japan).
Temperature Controller (
CN8201, Omega Engineering Company, USA)
And contactor (
LEV200, Tyco Electronics, USA)
Used to start and terminate short circuits. A multi-
Channel data acquisition unit (
34 70A, Agilent Technology Company, USA)
Used to record the internal reaction temperature, surface temperature, current and voltage of the battery during each 0 tests. 5u2009s.
Battery tester (
BT2000, American Arbin Instrument Company)
Used to fully charge the battery before the short circuit test and characterize the battery performance after the short circuit test.
The short circuit test is carried out in a safe chamber providing natural convection cooling conditions.
With constant current, the battery is fully charged-
Constant Voltage (CC-CV)protocol (0. 8u2009A, 4. 2u2009V max, 0. 032u2009A cut-off)
At room temperature (25u2009±u20091u2009°C).
The battery then rests for at least an hour to allow open voltage (OCV)
Before the performance representation after the short circuit test or short circuit test, the battery temperature is balanced.

GET IN TOUCH WITH Us
recommended articles
SERVICE INFO CENTER Inverter Compatibility
How to Choose a Solar Battery Storage Supplier? — GSL ENERGY Professional Guide
If you need solar battery storage, the first step is often to find a reliable solar battery storage supplier. However, with so many brands and platforms on the market, how to find a solar battery storage supplier worth long-term cooperation is indeed a challenge for many customers. As a lithium iron phosphate energy storage manufacturer with 15 years of experience and exports to 138 countries, GSL ENERGY has summarized the following key points for you.
Six major energy storage products on display!  GSL ENERGY debuts at the World Battery and Energy Storage Industry Expo
From August 8 to 10, 2025, GSL ENERGY will debut at the 10th World Battery and Energy Storage Industry Expo.
Ghana Solar Power Storage Solutions | GSL ENERGY, a One-Stop Energy Storage System Supplier
Frequent power outages, rising electricity prices, and high costs of diesel-powered generators have made stable power supply a critical need for businesses and households in Ghana. With 15 years of experience in lithium-ion battery manufacturing, GSL ENERGY provides a comprehensive solar energy storage solution tailored for the Ghanaian market—including solar panels, energy storage batteries, inverters, and energy management systems. This solution helps you achieve energy independence, reduce operational costs, and is certified by international standards such as CE, IEC, and UL, ensuring seamless export compliance.
60kWh Energy Storage Battery and Solar Panel/Inverter Operating Principles
In modern energy applications, the combination of solar panels and energy storage batteries has brought unprecedented energy independence and economic benefits to residential, commercial, and industrial users. By storing excess electricity generated during the day in a 60kWh energy storage battery, you can not only maintain power supply during nighttime or inclement weather but also release electricity during peak pricing periods, or even sell excess power back to the grid, achieving a win-win scenario of green, low-carbon living and financial gains. This article will provide you with a comprehensive understanding of the working principles and advantages of the 60kWh energy storage battery, solar panels, and inverters.
2025 Solar Battery Storage System – GSL Energy Solutions
From residential Powerwall batteries to high-voltage liquid-cooled BESS cabinets, GSL ENERGY is leading the way in delivering safe, efficient, and scalable energy storage solutions. In 2025, we continue to push boundaries with advanced HV architecture, modular scalability, and global-certified products – powering homes, businesses, and large-scale industrial projects across 138 countries.
GSL ENERGY Deploys 240kWh Energy Storage System in Caribbean Metro Station to Ensure Public Transport Energy Security
GSL ENERGY has successfully deployed a 240kWh lithium-ion battery energy storage system in a metro station in a major Caribbean city, providing continuous and stable power for lighting, air conditioning, and key control equipment in the station. This significantly enhances the emergency energy capacity and operational reliability of the local public transport system.
no data
 Service Tel: +86-755-84515360
 Address: A602, Tianan Cyber Park, Huangge North Road, Longgang District, Shenzhen, China
GSL ENERGY - A leader of green energy provider in china since 2011

0086 13923720280

Solar energy storage battery manufacturer contact information
Contact us
whatsapp
Contact customer service
Contact us
whatsapp
cancel
Customer service
detect